If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-40x+31=0
a = 1; b = -40; c = +31;
Δ = b2-4ac
Δ = -402-4·1·31
Δ = 1476
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1476}=\sqrt{36*41}=\sqrt{36}*\sqrt{41}=6\sqrt{41}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-6\sqrt{41}}{2*1}=\frac{40-6\sqrt{41}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+6\sqrt{41}}{2*1}=\frac{40+6\sqrt{41}}{2} $
| x+42+x+31=18x-7 | | 3z=15/4 | | 5x^2-8x-30=0 | | 3x^2+5.25x+14.25=0 | | 0.68x+8.4=0.3+12.2 | | 30+20w+20=46w-2 | | 19x=752 | | b+27=-54 | | 30+20w)20=46w-2 | | 3/4(-7+9x)=3/4(4-7x)+33/4 | | y+20+4y-12=7y-40 | | 5-5p=-7-2p | | 2r+4(1-3r)=30+3r | | -2(1+2a)-(8a+1)=-51 | | 8-1/2y=-4 | | (6-x/2)=2 | | 9a+2a(6)=5 | | (6-x/)=2 | | 12-7x=-5(2x+6)-4x | | 7q-10=10q+20 | | 3p+2=p-p | | Y^2-y-3.25=0 | | -5x+6.1=3+9.9x | | 4x+14=128 | | -31/5x+71/10=42/9 | | 4y+15+3y-38=6y | | 15+2/3x=-10 | | 6+4q=-4-q | | 1/8x=3/8 | | 4y+15+3y–38=6y | | 6x+15=x+8 | | 3j+3=5j-7 |